Phoenix: Memory Speed HPC I/0 with NVM

Pradeep Fernando Sudarsun Kannan Ada Gavrilovska

Karsten Schwan

Georgia Institute of Technology

Abstract—Non-volatile memory (NVRAM) provides excellent oppor-
tunities to accelerate I/O in exascale machines. However, naive use of
NVRAM devices with current software stacks can expose the perfor-
mance bottlenecks due to limited device bandwidth. We address this by
designing Phoenix (PHX), a NVRAM bandwidth-aware persistent object
store for HPC applications that increases the aggregate checkpoint
bandwidth by the simultaneous use of NVRAM and DRAM devices,
leading to ~12x reduction in the checkpoint time and a ~18%
improvement in total simulation time.

I. INTRODUCTION

High performance computing applications produce huge amounts
of input/output (I/O) data that gets stored local to the compute nodes.
State of the art multi-level checkpoint schemes [1] store frequent
application checkpoints on node local storage in a bid to recover
from transient node failures. Scientific simulations use local storage
to persist the analytics outputs destined to downstream analytics
workflows. Therefore, it is important to design HPC I/O mechanisms
that have minimal impact on application performance and permit
fast checkpoints and analytics output onto local persistent storage.

Using non-volatile memory devices can play an important role for
future I/O in HPC systems. NVRAM devices such as 3D-XPoint,
Memristors and PCM are byte addressable and are expected to
provide 100x faster read/write access compared to their closest
memory-based storage alternatives such as PCle-based SSD. Fur-
thermore, the NVRAM technologies are expected to provide higher
density (up to 10x than DRAM) and do not require refresh energy
(unlike DRAM), which makes them a viable candidate to use as
stable storage in HPC I/O.

However, the limited bandwidth of the NVRAM device going to
be a bottleneck in the context of persistent HPC I/O. First, the next-
generation HPC engines will have an order of magnitude increase
in core counts per node (64-128 cores per node) — increasing the
amount of I/O generated within a compute node. Next, the gang
I/0 nature of the HPC applications is likely to split the NVRAM
bandwidth ever further, thus severely lowering the per-core NVRAM
bandwidth. Finally, NVRAM technologies like PCM are known
to have limited read/write bandwidth(4 — 8 X lower than DRAM),
write bandwidth in particular. We attribute the limited read/write
bandwidth to the underlying data storage physics of the device. In
summary the poor bandwidth scaling of NVRAM may become a
major bottleneck during HPC I/0.

We present Phoenix (PHX) — an NVRAM-bandwidth aware library
for checkpoint I/0. PHX achieves efficiency through the use of
memory-centric object interfaces and a device stack specialized for
NVRAM. The library provides applications with familiar ‘malloc’-
like interfaces for object creation, but differs from the former in that it
allows the application programmer to tag a created object space with
properties related to persistence and versioning. PHX deals with the
limited NVRAM bandwidth through simultaneous use of NVRAM
and local/ peer nodes’ DRAM devices, thus increasing the effective
data movement bandwidth. PHX’s memory-centric object interface
and NVRAM-bandwidth-aware design lead to reduction in the time
length of I/O operations in the critical path, associated with the
slow NVRAM device. To continue guaranteeing adequate reliability
and persistence, DRAM-resident object state is replicated across
peer nodes’ memory, which is accessible through high-bandwidth
interconnects. PHX is implemented and evaluated with several
representative HPC applications — 3D Gyrokinetic Toroidal Code
(GTC), CM1 and S3D.

II. PHX CHECKPOINTS

PHX presents the concept of persistent objects to the HPC
applications. All types of HPC 1/O are modeled as operations on
memory objects accessed via memory-based APIs. Applications

declare the expected object characteristics (persistence, versioning)
during the initial object allocation. At the heart of the Phoenix is an
object tracking runtime that provides object versioning, reliability,
and persistence. The base APIs of the Phoenix runtime are as follows:

o init() - initialize the Phoenix library runtime.

« create_obj(key, size, unit_size, properties) - allocate an object
from main memory and set its property (persistence, versioning,
etc) details; return a memory pointer to the caller.

o checkpoint_commit - copy the content of main memory
resident checkpointable variables into NVRAM

o destroy_obj(key) - de-allocate the memory space of a given
object key.

« finalize() - clean-up library resources

Figure 1 shows a simple template for implementing coordinated

checkpoints with PHX APIs. During the memory allocation pro-
grammers explicitly specify checkpoint objects via the property,
’CHECKPOINT=true’, and by default, ‘checkpoint_commit()’ oper-
ates on all such checkpoint objects and moves their DRAM copies
to NVRAM (checkpoint).

1 char key[]="foo";

2 /*create checkpointable object instance*/

3 struct properties prop = {.checkpoint = true, ...};
4 void *ptr=create_obj(key,SIZE,prop);
5

6 /*do computation using data_ptr*/
8 checkpoint_commit();
Figure 1: Using PHX-C/R service to carry out coordinated checkpoints

Aggregate bandwidth checkpoints. The NVRAM bandwidth is
likely to become the most bottlenecked resource during I/O data
movements. PHX uses DRAM bandwidth to alleviate the limited
NVRAM bandwidth during data output. The key idea is to use
aggregate device bandwidth of both DRAM and NVRAM during
1/0 data movement, thus shortening the critical path data movement
time. Towards that end, first Phoenix splits the total critical path
I/O data into two parts: DRAM-bound data (Ddata) and NVRAM-
bound data (Ndata), while taking device bandwidth ratios, application
object access patterns and DRAM capacity budget into consideration.
During a bulk I/O data movement, PHX moves a copy of Ddata
into a DRAM buffer, and in parallel moves Ndata over to NVRAM.
However, the DRAM is volatile and hence saved Ddata has to be
quickly moved from DRAM to NVRAM and committed — a critical
property for achieving the data persistent property for written I/O
data. We refer to this operation as I/0 de-staging, and the DRAM-
resident temporary buffers as staging buffers.

Staged data reliability. The naive use of the aggregate bandwidth
approach falls short of providing the required data reliability
guarantees for I/O, because part of the output data (Ddata) remain
in DRAM before being de-staged to NVRAM, making it vulnerable
to data loss. However, in current supercomputers, the network
interconnects offer point to point bandwidths up to 56 Gbps and
these numbers expected to be 100-400Gb/s in future HPC machines.
The fast interconnect bandwidth and remote direct memory access
(RDMA) stacks make the cost of writing/reading remote DRAM
memory cheaper than that of local NVRAM memory. Phoenix uses
N=2 replication scheme for its DRAM staged data (Ddata). For each
of compute node, we assign a buddy node to act as the remote DRAM
node. During the aggregate bandwidth copy, we write staged data to
both local DRAM and to the buddy node’s DRAM (using RDMA).
We show that N=2 replication scheme brings down the Ddata loss
probability from 0.98960270 to 0.00000003 — a negligible failure
probability, for a simulation run of 48 hours, with 2880 checkpoints
(checkpointing once in every 60 seconds).

Energy Model. While PHX C/R speeds up the checkpoint times, it
incurs additional energy overheads compared to naive NVRAM
checkpoints, due to extra data movements (de-staging/ buddy
checkpoints). However the fast checkpoints results in total simulation
time reduction, thus energy savings. We analyze the trade-off between
data movement energy costs and fast checkpoints using a closed
form abstract energy model.

We plot the Figure 2 graph using faithful instance values derived
from the recent literature [2] on the subject. We consider two
interconnect technologies and buddy distances (buddy being single/
double switches away) for energy overhead line plots. We show
energy saving plots for multiple DRAM:NVRAM bandwidth ratios.
For an example, the resulting plot shows that it is possible to stage
up to ~750MB of PHX checkpoint data (N=2 replication, buddy
one switch away and using OmniPath interconnect) without extra
overheads when the DRAM:NVRAM bandwidth ratio is 2:1. Thus
careful selection of PHX configuration parameters will lead to net
energy savings during the simulation run.

0.8 I I T T

0.7 He—e omnipath single switch
0.6 > omnipath double switch - -« ---osemaaeans
05 H exascale single switch .
1 exascale double switch

Energy (J)

I 0 100 200 300 400 500 600

staged data size (mB)
Figure 2: Curved plots (dark, medium and light shaded areas) show the
energy savings of PHX C/R over naive NVRAM C/R, under different
DRAM : NVRAM bandwidth ratios, 2:1, 4:1 and 8:1 respectively. line
plots refer to OmniPath and expected exascale interconnect energy costs,
during N=2 replication scheme, while the buddy node distance being
single/ two switches away.

700 800 900 1000

III. EVALUATION

We evaluate PHX with three real-world HPC applications — GTC,
CM1 and S3D (results not presented here due to space constraints)
— and observe the C/R performance. The applications consist of
algorithms related to different scientific fields, and each application
shows different C/R characteristics such as compute to checkpoint
data ratios, variable access patterns, etc. We used 4 nodes from the
Stampede cluster for our evaluations. Each node consists of dual
socket Intel Xeon ES with 16 cores and 32 GB of main memory,
interconnected via 56Gbps Mellanox InfiniBand. We reserve 12 GB
out of main memory to NVRAM and emulate the reduced NVRAM
bandwidth using software delays.
Experimental Overview. We run each of the HPC benchmarks
against three different checkpoint schemes, (i) nvram - a naive
method of copying all the data at once during checkpoint (ii) phx -
the proposed C/R method which relies on use of aggregate NVRAM
+ DRAM bandwidth, and finally (iii) phx-ec - corresponding to
‘phx’ with a speculative pre-copy [3] optimization. We record (i)
the checkpoint times of each benchmark application with varying
per-core-bandwidth values, (ii) the time spent on de-staging and (iii)
the compute iteration time. The results are presented in terms of
per-core bandwidth. The metric represent the effective bandwidth
seen by one processor core during parallel NVRAM writes. In all
experiments we use the N=2 replication scheme for PHX checkpoints
and the buddy node is chosen to be one network switch away. We
run 12 MPI processes on each node. Each MPI process has a helper
thread, but all the helper threads are pinned to a single dedicated
core in the node.

GTC [4] checkpoint data constitutes of 2D/3D arrays. It is a data-
heavy application and thus naive NVRAM data copy time can be
as high as 37% compared to the compute time of the application.
Tracking of access times of individual variables suggests that GTC
checkpoint variables are pre-copy friendly, that is some of the
variables get last accessed early in the compute cycle. Each core
writes 235 MB of checkpoint data and we assign a staging buffer size
of 125 MB (~50% of the checkpoint data). The PHX checkpoint
scheme cuts the checkpoint time Figure 3 by nearly half and
PHX-ec that applies pre-copy optimization over PHX, improves
the checkpoint time by as much as 12x.

CML1 [5] represents a highly compute intensive class of applications
within out selections of benchmarks. Therefore, naive NVRAM
checkpoint time only accounts for ~7%, compared to compute time.
Unlike GTC, CM1 modifies its checkpoint variables up until the
checkpoint time. Similarly to the GTC runs, we allocate ~50% of
checkpoint size as the DRAM staging buffer capacity. The numbers
in Figure 3 show that PHX-ec fails to deliver any checkpoint time
improvement over PHX. However PHX perform 2x better over naive
NVRAM checkpoints, proving the effectiveness of the technique,
irrespective of the application data access behaviour.

~ 8
- - I I
§ g:- nvram [phx-ec 7
S 5 +— destage-timel- - -
O 4 .
2 g -]
L -
E 1 -ggrre—c- - P S—C | [- -
<0
400MB/s 250MB/s 125MB/s 64MB/s
per-core NVRAM bandwidth
(a)GTC

—~ 6

S 5]
o 4 -
3 3

$ -
o 2 7
E 1 7]
<0

250MB/s 125MB/s 64MB/s
per-core NVRAM bandwidth
(a)CM1

Figure 3: Checkpoint times of workloads, plot against varying per-core
NVRAM bandwidths and checkpoint schemes

Conclusion. PHX shortens the NVRAM critical path data movement
time and converts DRAM into stable-enough storage for checkpoint
data, by a combination of data staging, asynchronous de-staging and
data-replication. PHX evaluations on real-world HPC applications
and emulated NVRAM hardware shows up to ~12x speedups in
checkpoint times over the naive NVRAM data copy method. The
design and evaluation of PHX are presented in detail in [6]
REFERENCES
[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing system,”
in SC ’10. IEEE, 2010, pp. 1-11.

[2] “Energy Consumption and Performance Design Space Trade-Offs for
Optical Data Center Networks,” https://arpa-e.energy.gov/sites/default/
files/Bergman_Columbia_Data_Center_Workshop_0.pdf.

[3

—

S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Optimizing
checkpoints using nvm as virtual memory,” in /PDPS ’13. 1EEE, 2013,
pp- 29-40.

[4] “Gyrokinetic Toroidal Code,” http://phoenix.ps.uci.edu/GTC/.
[5

=

G. Bryan and J. Fritsch, “A benchmark simulation for moist nonhydro-
static numerical models,” Monthly Weather Review, vol. 130, 2002.

[6

—

P. Fernando, S. Kannan, A. Gavrilovska, and K. Schwan, “Phoenix:
Memory speed hpc i/o with nvm,” in To be presented in HiPC, 2016. http:
/Iwww.cc.gatech.edu/grads/p/pfernand/pubs/hipc2016_pfernando.pdf.

