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Node Local Persistent I/O ?

« Node |ocal checkpoint/ restart
- Recover from transient failures ( node restart)
- Transient/ soft failures — not permanent failures
- More soft failures in future machines

 Locally stored analytics output
- Co-running analytics



NVRAM is |deal for Persistent I/0O

« Read/ write latencies comparable to DRAM
- 100x faster than SSD

e Persistent data writes
- Data retention time is >10 years for Memristor

* Denser memory
- Low chip area per bit -> more capacity

« Memory device -> |oad/ store operations



NVRAM Bandwidth?

« HPC applications move data in bulk
- 1/O after implicit/explicit synchronization

« More I/O in future Exascale simulations
- More cores per node -> more data

« Poor bandwidth scaling of NVRAM
- Device physics
- RAID like structures -> more energy



Key Idea: Aggregate Bandwidth
Checkpoints

* NVRAM provides denser
persistent memory, but
nas limited bandwidth

O )

« DRAM has superior f |
bandwidth compared to DRAM
NVRAMS (4x-8x) <

-

» Accelerate critical path \— AYRAM

data movement with
bandwidth aggregation




Phoenix (PHX) Design



Problem : Software Stack Overheads

» Using NVRAM as a block device under file
system lengthens the I/O path.
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Problem : NVRAM Access Latencies

« NVRAM writes/ reads are expensive
- Writes takes 4x more time than DRAM
- Application works with a DRAM allocated object
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« NVRAM writes/ reads are expensive
- Writes takes 4x more time than DRAM
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char key[]="foo";

/Fcreate checkpointable object 1nstance®/
struct properties prop = {.checkpoint = true,
vold “ptr=create_obj(key,SIZE,prop);
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Resulting PHX C/R AP

Allocate checkpoint object
char key[]="foo";

/*create checkpointable objec*—astance*/

struct properties prop = {.checkpoint = true, ...};
void “ptr=create_obj(key,SIZE,prop);
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/7 do computation using data_ptr~®/

checkpoint_commit () ;



Resulting PHX C/R API

char key[]="foo";

Allocate checkpoint object

/*create checkpointable objec*—nstance*/

e B T o I S~ I

struct properties prop = {.checkpoint = true, ...};
vold “ptr=create_obj(key,SIZE,prop);

/*do computation using data_ptr®*/

checkpoint_commit () ;

—“—

&

Create a versioned copy
and move it to NVRAM
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Problem: Limited NVRAM Banadwidth

* Simultaneous bandwidth usage of both
NVRAM and DRAM
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Checkpoint Data Split
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1. Optimal data split ratio is same as the device
bandwidth ration

2. Prioritize staging for late access variables -
iImmune to optimizations (e.g. Pre-copy)

3. Memory budget allocated for staging.
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Fault Tolerance of Staged Data



Staging Buffer Data Loss

* Staged data is vulnerable to transient node
failures.
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Staging Buffer Data LosS

e Staged data is vulnerable to transient node
failures.
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Staging Buffer Data LosS

e Staged data is vulnerable to transient node
failures.
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Buddy Node Replication (N=2)
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Buddy Node Replication (N=2)
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Failure Probability of Staged Data

Scheme Execution Checkpoint Max de-stage Failure

) time interval interval probability
Free run 24 hrs : : (0.999998%7
PHX, N=1 48 hrs 60 s 10 s 0.98960270
PHX, N=2 48 hrs 60 s 10 s 0.00000003
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Failure Probability of Staged Data

Scheme Execution Checkpoint Max de-stage Failure

) time interval interval probability
Free run 24 hrs : : (0.999998%7
PHX, N=1 48 hrs 60 s 10 s 0.98960270
PHX, N=2 48 hrs 60 s 10 s f:[].[][][]{][]{][]_’%\;

« N=2, buddy replication scheme brings down

the staged data loss probability to negligible
level.
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Energy Cost Analysis



Energy Overheads of PHX

« PHX energy overheads
- Checkpoint staging
- Stage buffer replication

« Depends on
- Interconnect technology
- Distance to buddy
- DRAM write costs

/ Additional energy costs

Buddy
replication

Energy costs of

\\\\éata staging
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Energy Savings of PHX

 Fast PHX checkpoints
cut down the total
simulation time.

* Energy savings!

-

Execution
time - naive

Execution
time - PHX
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Time
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« For DRAM:NVRAM bandwidth ratio of 2:1 PHX can
stage up to ~/50 MB (total checkpoint size is 1GB)
when the buddy node is one switch away
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PHX Saves Energy
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Careful selection of PHX configuration parameters
will lead to
both fast checkpoints and energy savings.

« For DRAM:NVRAM bandwidth ratio of 2:1 PHX can
stage up to ~/50 MB (total checkpoint size is 1GB)
when the buddy node is one switch away



Fvaluation

« Four node cluster run in the stampede
supercomputer

« Emulated NVRAM using software delays

 Three application benchmarks
- GTC
- CM1
- 53D



GTC Benchmark

» Checkpoint data-intensive application

* Staging buffer size -- 50% of checkpoint data
per interval

e Lot of early access variables
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CM7T Benchmark

« Compute heavy application

e Staging buffer = 50% checkpoint data per
interval

« No early access variables
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Total Simulation Time

« Application - GTC
« Total time over 10 compute iterations
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Summary

« PHX - a bandwidth aware checkpoint/ restart
scheme for NVM

- Reduce C/R time, accelerate simulation time
- Reduce energy requirements

 The technigue shows promising results in the
evaluated scale

- C/R costs will only increase with scale, so solutions like
PHX will only gain importance

* Future work
- Evaluate against analytics workloads

- Deployment and evaluation at scale

- Will be carried out as part of the UNITY SSIO/ SICM ECP
projects, funder by US DoE



Thanks!

Pradeep Fernando
pradeepfn@gatech.edu

Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan

We thank IEEE TCPP and the National Science Foundation for providing travel
support to attend IEEE HiPC 2016

Q&A

27



