
Using TSX For NVM Consistency

• No memory fencing and cache
flushing after every write

• No read re-direction

• Logging is overlapped with
transactional execution of the
code

• Optimistic concurrency
enabled durable transactions

nvmtsx_begin()

nvmtsx_end()

logging

sync point

NVM

Pradeep Fernando, Irina Calciu, Jayneel Gandhi

s/w begin() s/w end()

NVM

writes reads

redo logundo log

flush, fence

write
write

read
read

checkpoint

• Vacation benchmark – travel reservation system
• Application runs with single thread, on real

hardware.

no persistence

• Non-volatile memory (NVM) provides
persistent load/stores at memory
speeds

• Crash-consistent/ atomic NVM updates
still need software transactions

• Undo-logging needs frequent
cache flushes and memory
fences

• Redo-logging needs read re-
direction

• Software transactions have
high overheads!

• Intel TSX supports atomic and
isolated execution of code
blocks

• TSX does not guarantee
durability nor crash-
consistency

• Keep speculative cache lines in L1
• Use cache coherence protocol to

detect conflicting updates
• Optimistic concurrency semantic

Processor

L2 cache

L1 cache

speculative TSX cache lines

coherence
messages

st = _xbegin();
if(st = success){

/* code */
_xend();

else{
/* fallback */

}

1 2 3

4

5 6

